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Abstract
We employ a first-principles total-energy method to investigate the theoretical tensile and shear
strengths of fcc Ni systematically. The theoretical tensile strengths are shown to be 36.1, 10.5
and 34.1 GPa in the [001], [110] and [111] directions, respectively. We indicate that [110] is the
weakest direction due to the formation of an instable bct ‘phase’ in the tensile process. The
theoretical shear strengths are, respectively, 5.1 and 15.8 GPa in the ‘easy’ and ‘hard’ directions
in the {111}〈112〉 slip system, and 6.4 GPa in the {111}〈110〉 slip system. Both the tensile and
the shear strengths are consistent with either experimental or theoretical values. The different
shear strengths in the ‘easy’ and ‘hard’ directions originate from the different charge
redistribution under the shear strain. The shear strain along the ‘easy’ direction of [112] results
in a charge distributed in the 〈001〉 which forms a directional bond, while the strain along the
‘hard’ direction of [112] makes the charge extend to the whole {111} interlayers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The theoretical (ideal) strength of materials is the stress that
is required to force deformation or fracture at the elastic
instability [1]. The theoretical strength sets an upper bound
on the attainable stress. The strength of a real crystal can be
changed by the existing cracks, dislocations, grain boundaries
and other microstructural features, but its theoretical value can
never be increased [1, 2]. The theoretical tensile strength is
when a material becomes unstable with respect to fracture by
the spontaneous separation of atomic planes. On the other
hand, the theoretical shear strength is when a material becomes
unstable with respect to spontaneous shear deformation. The
upper limit of the tensile or shear strength is of obvious interest
for strong solids in atomic models [1, 3–5]. These models were
originally developed by Frenkel [6] and Orowon [7], since
the theoretical strength is an intrinsic material property that is
determined by the behavior of valence electrons and ions.

3 Author to whom any correspondence should be addressed.

By virtue of the development of the density-functional
theory (DFT) [8, 9] combined with the band-theoretical
schemes and the rapid progress of modern computers, it
became possible to do a first-principles computational tensile
or shear test (FPCTT/FPCST) to investigate the stress as
a function of strain and obtain the theoretical tensile or
shear strengths by deforming crystals to failure [10]. In
FPCTT/FPCST, symmetry is generally an important factor
in determining the stress–strain relation and the calculated
theoretical strength. For single crystals, earlier studies on
the theoretical tensile strength of W, Cu, Ir and NiAl have
been made by Sob et al [11–13]. So far, the theoretical
tensile and shear strengths of fcc (Cu, Al) and bcc (Mo,
W, Nb, Fe) metals have been published [2, 5, 14, 15]. On
the other hand, the theoretical strength can also be extended
to defective systems containing only one defect such as a
point defect [16], an interface or a grain boundary [17–23].
The theoretical tensile strengths of a clean Al grain boundary
(GB) and an Al GB containing Na, Ca, S and Ga have
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Figure 1. The geometric structure of tensile unit cells of the fcc Ni in the directions [001] and [110]. (a) shows the body-centered tetragonal
(bct) unit cell inside the fcc Ni. (b) is a general fcc unit cell of Ni with 4 atoms inside, while (c) is a bct unit cell with 2 atoms inside drawn
from (a). The unit cell of (c) is used for the FPCTT in the [110] direction, and both (b) and (c) can be used for the FPCTT in the [001]
direction. (d) is the unit cell containing 6 atoms employed for the FPCTT in the [111] direction.

been calculated in order to explore the impurity-induced
intergranular embitterment [19–23].

Ni is one of the important magnetic transition metals
which have many applications. So far, the FPCST has
been done by Ogata et al to calculate the theoretical shear
strength in the ‘easy’ shear direction in the {111}〈112〉 slip
system [24]. However, the stress as a function of strain and
the theoretical strength (both tensile and shear) for Ni have not
been systematically explored. In particular, little has been done
on the charge distribution in the shear process in both ‘easy’
and ‘hard’ directions in the {111}〈112〉 slip systems, which can
reflect the intrinsic nature of the atomic bonding of Ni. Further,
the theoretical (ideal) tensile and shear strengths of fcc Ni have
been provided either experimentally (i.e. estimated from the
experimentally determined elastic constants) or theoretically
(e.g. estimated from the potential energy) [1], making us
able to make a full comparison. In this paper, we thus have
performed both the FPCTT and the FPCST on fcc Ni to explore
its theoretical mechanical properties systematically.

2. Computational method

We employ a total-energy method based on the density-
functional theory (DFT) [25, 26] with the generalized gradient
approximation (GGA) [27]. The wavefunctions are obtained
by solving the Kohn–Sham equation using a plane-wave
basis. The plane-wave kinetic energy cutoff is 340 eV.
For summation over the Brillouin zone, a uniform grid
of k points is chosen according to the Monkhorst–Pack
scheme [28]. All calculations have been performed using the
VASP code [29, 30]. The spin polarization has been taken
into account because Ni is a typical magnetic transition metal.
The theoretical shear strength can be lowered without spin
polarization [24]. The interaction between ions and electrons
is described by the projector augmented wave (PAW) potential
based on GGA. The energy relaxation iterates until the forces
on all the atoms are less than 10−3 eV Å

−1
.

The calculated equilibrium lattice parameter is 3.519 Å for
fcc Ni, in good agreement with the corresponding experimental
value of 3.52 Å. The fcc Ni has three independent components
for the elastic constant, i.e. C11, C12 and C44. All these
three components have been calculated. As shown in table 1,
the calculated elastic constants are consistent with those from

Table 1. Calculated and experimental elastic constants of fcc Ni.

Elastic constant (GPa) Calculation Experimental [31]

C11 283.6 261.2
C12 157.7 150.8
C44 126.8 131.7

experiment [31]. For instance, C11 was calculated to be
283.6 GPa, ∼8% larger than the 261.2 GPa from experiment.

In the FPCTT/FPCST, a tensile (uniaxial) or shear strain
has been applied to the chosen crystalline directions of fcc
Ni, and the corresponding stress is calculated according to the
Nielsen–Martin scheme [32]. For the uniaxial tensile strain,
the tensile stress σ is calculated from

σ = 1

�(ε)

∂ E

∂ε
, (1)

where E is the total energy and �(ε) is the volume at a given
tensile strain of ε. Similar to the previous study on Mo [5], the
shear stress τ corresponding to the shear strain is

τ = 1

�(γ )

∂ E

∂γ
, (2)

where �(γ ) is the volume at a given shear strain of γ .
The lattice vectors were incrementally added in the

direction of the imposed strain. At each strain step, the
structure was fully relaxed until all the other five stress
components vanished except those in the tensile or shear
direction. The tensile or shear stress for each strain step
can be calculated, and thus the stress–strain relation and the
theoretical tensile or shear strength can be obtained.

3. Results and discussion

3.1. FPCTT of fcc Ni and the theoretical tensile strength

In the FPCTT of fcc Ni, we choose three representative
directions including [001], [110] and [111]. Two unit cells with
different symmetry are employed for the FPCTT in different
directions, as shown in figure 1.

For the FPCTT in the [001] direction, both unit cells of (b)
and (c) in figure 1 can be used. Here we used the body-centered
tetragonal (bct) unit cell that is drawn from the fcc crystal. The
original unit cell exhibits tetragonal symmetry. Such symmetry
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Figure 2. Energy (a) and stress (b) as a function of tensile strain in the [001], [110] and [111] directions, respectively.

Figure 3. The evolution of geometric structures of the unit cell of fcc Ni under tension in the [110] direction.

will not change in the tensile process in the [001] direction.
Figure 2(a) shows the strain energy as a function of tensile
strain. The strain energy increases with the increasing strain,
exhibiting an inflection at the strain of 38%. Correspondingly,
as shown in figure 2(b), the stress increases with increasing
strain until it reaches a maximum of 36.1 GPa at a strain of
38%, after which the stress decreases. Thus, the theoretical
tensile strength is 36.1 GPa in the 〈001〉 direction.

Next, we performed the FPCTT in the [111] direction, the
unit cell of which is shown in figure 1(d). Similar to the [001]
direction, figure 2(b) shows the stress reaches the maximum
of 34.1 GPa at a strain of 24%, corresponding to the inflection
in the energy–strain curve (figure 2(a)). The theoretical tensile
strength is thus 34.1 GPa in the [111] direction.

As compared with the [001] and [111] directions, the
stress–strain relation in the [110] direction differs noticeably.
The unit cell we used for this direction is the bct shown in
figure 1(c). The strain energy as a function of strain is shown
in figure 2(a). The energy increases first with increasing
strain, then reaches a maximum at a strain of 18%, after

which the energy decreases to zero again at a strain of 42%.
The maximum or minimum of the strain energy corresponds
to zero-stress points in the stress–strain curve in the [110]
direction. As shown in figure 2(b), the stress exhibits one
maximum of 10.5 GPa at a strain of 8%, and then reaches zero
at the strain of 18%. Further strain increase leads to a negative
stress, and the stress reaches a minimum of 9.9 GPa at a strain
of 28%. It reaches zero again at a strain of 42%. Therefore,
the stress exhibits two saddle points (one maximum and one
minimum) and three zero points in the tensile process so far.

The zero-stress point in the stress–strain curve corre-
sponds to a stress-free phase generated in the tensile process.
The initial zero-stress point corresponds to the initial bct phase
(fcc structure), as shown in figure 3(a). The ratio of a:b:c for
such a phase is 1:1:

√
2. With strain increasing, the lattice pa-

rameter of a increases, while c decreases and b remains al-
most unchanged, as shown in figure 4. The lattice parameter
of c is equivalent with a at the strain of 18%, where the stress
reaches the second zero-stress point. At this point, there forms
a new bct structure with a = c > b (figure 3(b)), different

3



J. Phys.: Condens. Matter 20 (2008) 335216 Y-L Liu et al

Figure 4. The lattice parameter in units of a0 as a function of tensile
strain in the [110] direction.

from the original one. This point corresponds to the saddle
point of the energy maximum (figure 2(a)), which indicates
the new bct structure is an instable ‘phase’ despite its stress-
free characteristic. Such a structure will evolve to other stable
phases, even with a small perturbation. With further increase
of strain, the lattice parameter of c decreases continuously and
becomes equal to b at a strain of ∼32%. The ratio of b:c:a
becomes 1:1:

√
2 at the strain of 42% (figure 3(c)), correspond-

ing to the third zero-stress point in the stress–strain curve. The
present stress-free bct structure (i.e. fcc structure) is actually
the same as the initial one (figure 3(a)), but with a rotation of
90◦. Consequently, the stress–strain relation after the strain of
42% should be exactly the same as that in the [001] direction
shown in figure 2.

The evolution of the cell geometry shown in figure 3 is
similar to the ‘orthorhombic path’, as investigated in several
previous studies [2, 15]. It should be noted that the tensile
process between the strains of 18% and 42% with negative

stress for the [110] direction is a virtual process and cannot
actually occur. In the real process, the bct structure in the strain
of 18% (figure 3(b)) will evolve automatically to the final bct
structure at the strain of 42% (figure 3(c)).

According to the above results, both [001] and [111]
can be considered as stronger directions with the theoretical
tensile strength as large as above (30 GPa). However, [110] is
obviously a weak direction with tensile strength only ∼10 GPa,
despite it being a most-closely-packed crystalline direction in
the fcc Ni. The reason lies in that there forms an instable bct
‘phase’ (saddle-point structure) in the tensile process in the
[110] direction, as depicted above.

3.2. FPCST of fcc Ni and the theoretical shear strength

In addition to the tensile process and the theoretical tensile
strength, the shear process and the theoretical shear strength
are also quite particular for the metals. We have thus performed
the FPCST for the fcc Ni, choosing the slip systems including
{111}〈112〉 and {111}〈110〉, which are two representative slip
systems for fcc metals such as Ni. Although the shear process
in the 〈112〉 direction is preferred to occur in the actual shear
process [33] due to the lower generalized stacking fault (GSF)
energy, we still perform the FPCST in the {111}〈110〉 slip
system for reference.

For fcc metals, shear deformation in the {111}〈112〉
slip system can produce two different kinds of saddle-point
structures, i.e. the stress–strain relation of {111}[112̄] differs
from that in the opposite direction of {111}[1̄1̄2]. The two
shear deformations are called the ‘easy’ and ‘hard’ shear
directions, respectively. But, for the {111}〈110〉 slip system,
the stress–strain relation in all shear directions is symmetric.

The energy–strain and stress–strain curves for the
{111}〈112〉 slip system are shown in figure 5. For the
{111}[112̄] shear direction, the strain energy increases first as
the strain increases, then exhibits an inflection at a strain of
12%, and reaches the energy maximum at a strain of 32%.
Correspondingly, the stress reaches its maximum of 5.1 GPa

Figure 5. Energy (a) and stress (b) as a function of shear strain in the {111}〈112〉 and {111}〈110〉 slip systems, respectively.
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Figure 6. The evolution of geometric structure (top view from the [11̄0] direction) starting from the bcm-I structure in the shear process in the
{111}[112̄] easy and {111}[1̄1̄2] hard slip directions. The bct (one saddle-point structure) appears in the easy direction, while the bco (another
saddle-point structure) appears in the hard direction. The bcm-II (base-centered monoclinic) exhibits the same structure and symmetry as the
original bcm-I structure with the same lengths of the two sides, but it should be viewed from the opposite direction, i.e. [1̄10] (the dashed line
of bcm-II). The red filled and white open circles represent the atoms in the different [11̄0] planes.

at the strain of 12% and becomes zero at a strain of 32%,
after which the stress becomes negative. Thus, the theoretical
shear stress is 5.1 GPa for the {111}[112̄] direction. For the
{111}[1̄1̄2] shear direction, the energy–strain and stress–strain
curves are similar to those of the {111}[112̄] direction, but
the theoretical shear strength is 15.8 GPa at a strain of 26%.
The shear strength of 15.8 GPa in the {111}[112̄] direction
is roughly three times larger than that of 5.1 GPa in the
{111}[112̄] direction. Thus, we call {111}[112̄] as the ‘easy’
direction and {111}[1̄1̄2] as the ‘hard’ direction. Hence, the
theoretical shear strength for the {111}〈112〉 slip system is
5.1 GPa, corresponding to the easy direction, which agrees well
with 5.05 GPa calculated by Ogata et al [24].

The geometric structure evolves quite differently between
the ‘easy’ and ‘hard’ directions in the {111}〈112〉 slip system.
Initially the fcc unit cell can be treated as a base-centered
monoclinic (bcm) structure with the lengths of the two sides
as 0.71a0 (a0 is the lattice parameter of fcc Ni) and 1.22a0,
respectively (bcm-I in figure 6). Under the shear in the ‘easy’
{111}[112̄] direction, a stress-free bct structure (saddle-point
structure) appears at the strain of 32% (bct in figure 6, depicted
as the dashed line), while another stress-free bcm structure
appears at the strain of 68% (bcm-II in figure 6). The bcm-
II structure exhibits the same structure and symmetry as the
original bcm-I structure with the same lengths of the two sides
(0.71a0 and 1.22a0), but it should be viewed from the opposite
direction, i.e. [1̄10] (the dashed line of bcm-II). Under the
shear in the ‘hard’ {111}[1̄1̄2] direction, a stress-free base-
centered orthorhombic (bco) structure (saddle-point structure)
appears at the strain of 64% (bco in figure 6); while the
structure evolves to the bcm-II structure at the strain of 142%.

As illustrated in figure 6, successive shear in the easy
direction results in the same stress–strain relation as in the hard
direction, and vice versa. Consequently, there forms a cycle of
bcm-I ↔ bct ↔ bcm-II ↔ bco ↔ bcm-I characterized by
the appearance of the ‘easy’ and ‘hard’ stress–strain relations

alternately under the shear in either {111}[112̄] or {111}[1̄1̄2].
This demonstrates again that the ‘easy’ direction for the fcc Ni
is {111}[112̄] and the ‘hard’ direction is {111}[1̄1̄2].

The energy and stress as a function of the shear strain in
the {111}〈110〉 slip system are shown in figure 5. Different
from the {111}〈112〉 slip system, the two {111}[1̄1̄0] and
{111}[110] shear directions are symmetric, and thus exhibit no
‘hard’ and ‘easy’ directions. The theoretical shear strength of
the {111}〈110〉 slip system is 6.2 GPa at a strain of 20%, which
is a little larger than the 5.1 GPa of the {111}〈112〉 system. This
is because the GSF energy in the 〈110〉 direction is larger than
in the 〈112〉 direction for fcc metals [14, 33] and thus easier to
slip under the shear deformation.

In addition, the theoretical shear strength in the
{111}〈112〉 slip system (5.1 GPa) is lower than the theoretical
tensile strength of 10.5 GPa in the [110] direction, which
indicates that the slide is easier to occur. This suggests Ni is a
metal with good plasticity.

3.3. Charge redistribution in the FPCST and its relation with
the shear strength

We next investigate the charge density distribution in Ni in
the process of FPCST. The charge density iso-surface maps
for the ‘easy’ and ‘hard’ shear directions, i.e. {111}[112̄]
and{111}[1̄1̄2], are shown in figure 7. It is clear to see that
the charge density distributions are quite different for the two
slip directions. For the easy direction, the charge density will
distribute along the 〈001〉 direction with the strain increasing,
which can lead to directional bonding in the 〈001〉 direction
(figures 7(a)–(c)). This bonding characteristic is similar to
another typical fcc metal, Al [14]. In contrast, the charge goes
to distribute between the {111} crystalline planes with strain
increasing (figures 7(a) → (b′) → (c′)) and extends to the
full {111} interlayer at the strain of 26% (figure 7(c′)). This
will make the interaction between the {111} crystalline planes
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Figure 7. Charge density iso-surface distribution at the different shear strains for the {111}[112̄] easy and {111}[1̄1̄2] hard shear directions,
respectively. Negative strain represents the hard shear direction. The lower panel is a side view of the upper panel from the [11̄0] direction.

much stronger as compared with the easy direction. Such a
characteristic of the charge redistribution under the shear strain
results in the much higher shear strength in the hard shear
direction in comparison with the easy direction.

The different charge redistribution in the shear process
between the easy and hard directions is due to the shear
anisotropy in these two directions. Namely, the bcm-I structure
evolves to a bct structure in the easy direction, while it evolves
to a bco structure in the hard direction.

The theoretical shear strength of Ni in the easy direction
is 5.1 GPa. As compared with those of Al and Cu in the same
slip system, which are 2.84 and 2.15 GPa, respectively [14],
the strength of Ni is higher. This should originate from the
electronic structure difference between them. The valence
electrons of Ni are described as 3d84s2, with eight electrons
in the d orbital that is not fully occupied, which contribute
largely to its much higher shear strength under the shear strain.
Cu is characterized by one fully occupied 3d orbital with ten
electrons and one 4s orbital with only one electron, making
the electrons localize around the atoms even under the shear
strain [14]. Al is an element that is between the metals and
nonmetals, and has an electronic structure of 3s23p1. Al can
form strong directional bonds containing covalent components
with less-coordinated atoms such as under the tensile or
shear strain [14], or for defects including vacancy [33, 34],
surface [35] or grain boundary [18]. Hence, the shear strength
of Al is higher than that of Cu, but both are lower than
that of Ni.

3.4. Comparison with the experiments

Theoretically, both the theoretical tensile and shear strengths
can be determined from the Young’s modulus and shear

Table 2. The theoretical tensile strengths from our calculation and
other methods, Young’s modulus from our calculation and
experiments in the [001], [110] and [111] directions, respectively.

Direction
Calc.
σm (GPa) σm

a
Calc.
E (GPa)

Exptb

E (GPa)

[001] 36.1 37 170.9 150.8
[110] 10.5 259.6 237.8
[111] 34.1 313.9 320.2

a Polanyi and Orowan [1].
b Calculated analytically from experimental elastic
constants in table 1.

modulus. These moduli can be calculated from the elastic
constants [1]. Here we first calculate the Young’s modulus
and shear modulus from the elastic constants determined from
the present calculations (table 1) and compare them with those
from experiment.

The Young’s moduli in the [001], [110] and [111]
directions are calculated to be 170.9, 259.6, and 313.9 GPa,
respectively. These moduli are consistent with the
experimental value, as shown in table 2. The theoretical tensile
strength in the [001] direction of fcc Ni is 36.1 GPa according
to the present calculation. This agrees well with 37 GPa
estimated from the method by Polanyi and Orowan [1], i.e.
σ = √

Eγ /a0, which depends on the experimental values of
surface energy γ and Young’s modulus E .

In spite of the different shear paths, the stress–strain
curves coincide in the original shear stage for the two slip
systems according to the present calculation (figure 5(b)).
We can thus estimate the shear modulus from the slope
at the start of the stress–strain curves for both the 〈112〉
and 〈110〉 directions. The shear modulus is calculated

6
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Table 3. Shear modulus G, theoretical shear stress τm and failure strain τm/G in different slip systems.

G (GPa) τm (GPa) τm/G

Slip system Calc. Theoryd Expte Calc. Theoryd Calc. Theoryd

{111}〈112〉 84.1a 62 77.8 5.1a 7.1 0.061a 0.114
63.9b 0.080b

60.1c 5.05c 0.084c

{111}〈110〉 84.1a 77.8 6.2a 0.074a

63.9b

a The present calculation.
b The present calculation from the slope of the stress–strain curve.
c Calculation value from [31].
d Calculation from Mackenzie’s method [1].
e The experimental value (calculation from the experimental elastic constants).

to be 63.9 GPa. For the 〈112〉 direction, this is consistent
with the experimental value of 68.5 GPa determined from
experimental elastic constants [26] and the theoretical value of
62 GPa based on Mackenzie’s scheme [1] (table 3). This also
agrees with 60.1 GPa calculated by Ogata et al [24].

On the other hand, the shear modulus can also be
determined from the calculated elastic constants in the present
calculation in table 1. We derive the formulation of G as

G〈112〉 = G〈110〉 = 2C44(C11 − C12)

2C44 + C11 − C12
. (3)

The results are 84.1 GPa for both 〈112〉 and 〈110〉, which
are consistent with the experimental values of 77.8 GPa for
both directions calculated from the experimentally determined
elastic constants [31].

The simplest calculation of theoretical shear strength
originates from Frenkel [6], who presumes two neighboring
planes with a repeat distance in the shear direction in a crystal.
However, this is a very rough estimation. A more accurate
description of the theoretical shear strength has been proposed
by Mackenzie [1], who has chosen a convenient potential
energy function and matches the suitable coefficients according
to different metals, and then deduced the shear stress, i.e.
derivation of potential energy. This method is shown to be able
to give reasonable values of the theoretical shear strengths for
fcc metals. The theoretical shear strength for {111}〈112〉 is
shown to be 5.1 GPa, corresponding to the easy direction of
fcc Ni in the present work. This is in good agreement with the
result by Ogata et al [24], but lower than 7.1 GPa determined
from Mackenzie’s scheme [1]. This may be due to the full
geometry relaxation in the present FPCST in the shear process
in comparison with Mackenzie’s scheme. Such a geometry
relaxation effect has also been observed in both simulation
and experimental studies [36–40]. Furthermore, the calculated
failure strains (τm/G) are also shown in table 3.

4. Conclusions

We employ the first-principles total-energy method based on
the density-functional theory with the Generalized Gradient
Approximation to investigate the theoretical tensile and shear
strengths of fcc Ni systemically. The theoretical tensile

strengths are shown to be 36.1, 10.5 and 34.1 GPa in the
[001], [110] and [111] directions, respectively. We indicate
that [110] is a weakest direction due to the formation of an
unstable bct ‘phase’ in the tensile process. The theoretical
shear strengths are, respectively, 5.1 and 15.8 GPa in the
‘easy’ and ‘hard’ directions in the {111}〈112〉 slip system,
and 6.4 GPa in the {111}〈110〉 slip system. Both the tensile
and the shear strengths are consistent with either experimental
or theoretical values. The different shear strengths in the
‘easy’ and ‘hard’ directions originate from the different charge
redistribution under the shear strain. Namely, the shear strain
makes the charge distributed in the 〈001〉 direction to form a
directional bond for the {111}[112̄] direction, which makes it
extend to the whole {111} interlayers along the shear direction
due to its electronic structure characterized by the 3d orbital
that is not fully occupied. The results provide a good reference
for understanding the intrinsic mechanical properties of Ni as
well as other fcc metals.
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